Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171234

RESUMO

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

2.
Langmuir ; 38(43): 13065-13074, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264040

RESUMO

Bottom-up modeling of clay behavior from the molecular scale requires a detailed understanding of the free energy between pairs of clay platelets. We investigate the potential of mean force (PMF) for hydrated clays in face-to-face interactions with free energy perturbation (FEP) methods through molecular dynamics simulations using simple overlap sampling (SOS). We show that PMF results for open systems with one finite in-plane dimension are affected by migration of counterions from within the interlayer space compared with fully confined closed system conditions. We compare PMFs for two common 2:1 clay sheet minerals Illite (IMt-1) and Na-smectite. The PMFs for the open illite systems exhibit a strong attractive energy well at a basal layer separation, d = 11 Å and interlayer water content, wIL = ∼0.4% while the attractive minimum for the closed system occurs at d = 12 Å, wIL = 3.5%. In contrast, net repulsion occurs between pairs of Na-smectite platelets for both open and closed systems (for d < 15-16 Å). The free energy is closely related to the distribution of counterions; while K+ ions are bound closely to the surfaces of the illite platelets, Na+ ions are more spatially disperse. This PMF results contradict prior findings for Na-smectite and prompted further comparisons with other published results. We find that most of the published results do not represent accurately the free energy for face-face interactions between pairs of clay platelets that are effectively infinite (with width/thickness O[104]). The PMF results presented in this paper form a reliable basis for mesoscale, coarse-grained modeling of illite and smectite particle assemblies. We show that the Gay-Berne potential provides a reasonable first-order model for upscaling, while the solvation potential proposed by Masoumi enables a more accurate representation of the computed PMFs.

3.
J Phys Chem B ; 126(26): 4977-4989, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731697

RESUMO

Ion specificity and related Hofmeister effects, which are ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large-scale cohesive swelling and shrinkage behaviors of soil and sediments. We have used a semiatomistic computational approach and examined sodium, calcium, and aluminum counterions confined with water between charged surfaces representative of clay materials to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which cannot be captured by existing theories. Increasing confinement and surface charge densities promote ion-water structures that increasingly deviate from the ions' bulk hydration shells, being strongly anisotropic, persistent, and self-organizing into optimized, nearly solid-like assemblies where hardly any free water is left. Under these conditions, strongly attractive interactions can prevail between charged surfaces because of the dramatically reduced dielectric screening of water and the highly organized water-ion structures. By unravelling the ion-specific nature of these nanoscale interactions, we provide evidence that ion-specific solvation structures determined by confinement are at the origin of ion specificity in clays and potentially a broader range of confined aqueous systems.


Assuntos
Água , Argila , Íons/química , Eletricidade Estática , Água/química
4.
Proc Natl Acad Sci U S A ; 119(17): e2121945119, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439053

RESUMO

SignificanceNanoporous carbon texture makes fundamental understanding of the electrochemical processes challenging. Based on density functional theory (DFT) results, the proposed atomistic approach takes into account topological and chemical defects of the electrodes and attributes to them a partial charge that depends on the applied voltage. Using a realistic carbon nanotexture, a model is developed to simulate the ionic charge both at the surface and in the subnanometric pores of the electrodes of a supercapacitor. Before entering the smallest pores, ions dehydrate at the external surface of the electrodes, leading to asymmetric adsorption behavior. Ions in subnanometric pores are mostly fully dehydrated. The simulated capacitance is in qualitative agreement with experiments. Part of these ions remain irreversibly trapped upon discharge.

5.
Phys Chem Chem Phys ; 24(16): 9229-9235, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388814

RESUMO

The precipitation of zeolite nanoparticles involves the initial formation of metastable precursors, such as amorphous entities, that crystallize through non-classical pathways. Here, using reactive force field-based simulations, we reveal how aluminosilicate oligomers grow concomitantly to the decondensation of silicate entities during the initial step of the reaction. Aluminate clusters first form in the solution, thus violating the Loewenstein rule in the first instant of the reaction, which is then followed by their connection with silicate oligomers at the terminal silanol groups before reorganization to finally diffuse within the silicate oligomers to form stable amorphous aluminosilicate nanoparticles that do obey the Loewenstein rule. Our results clearly indicate that aluminate does not serve as the nucleation center for the growth of aluminosilicates in a nucleation-like process but rather proceeds via an aggregation process. The coexistence of aluminosilicate oligomers and small silicate entities induces a phase separation that promotes the precipitation of zeolites with aging.

6.
Phys Rev E ; 104(4-2): 045102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781466

RESUMO

Freezing in charged porous media can induce significant pressure and cause damage to tissues and functional materials. We formulate a thermodynamically consistent theory to model freezing phenomena inside charged heterogeneous porous space. Two regimes are distinguished: free ions in open pore space lead to negligible effects of freezing point depression and pressure. On the other hand, if nanofluidic salt trapping happens, subsequent ice formation is suppressed due to the high concentration of ions in the electrolyte. In this case our theory predicts that freezing starts at a significantly lower temperature compared to pure water. In one dimension, as the temperature goes even lower, ice continuously grows until the salt concentration reaches saturation, all ions precipitate to form salt crystals, and freezing completes. Enormous pressure can be generated if initial salt concentration is high before salt entrapment. We show modifications to the classical nucleation theory due to the trapped salt ions. Interestingly, although the freezing process is enormously changed by trapped salts, our analysis shows that the Gibbs-Thompson equation on confined melting point shift is not affected by the presence of the electrolyte.

7.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34348896

RESUMO

Cement is the most produced material in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, providing a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges is a major obstacle to advances in cement science and technology. Here, we combine computational statistical mechanics and theory to demonstrate how cement cohesion arises from the organization of interlocked ions and water, progressively confined in nanoslits between charged surfaces of calcium-silicate-hydrates. Because of the water/ions interlocking, dielectric screening is drastically reduced and ionic correlations are proven notably stronger than previously thought, dictating the evolution of nanoscale interactions during cement hydration. By developing a quantitative analytical prediction of cement cohesion based on Coulombic forces, we reconcile a fundamental understanding of cement hydration with the fully atomistic description of the solid cement paste and open new paths for scientific design of construction materials.

8.
Langmuir ; 37(18): 5464-5474, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33909979

RESUMO

A significant part of the hydrocarbons contained in source rocks remains confined within the organic matter-called kerogen-from where they are generated. Understanding the sorption and transport properties of confined hydrocarbons within the kerogens is, therefore, paramount to predict production. Specifically, knowing the impact of thermal maturation on the evolution of the organic porous network is key. Here, we propose an experimental procedure to study the interplay between the chemical evolution and the structural properties of the organic porous network at the nanometer scale. First, the organic porous networks of source rock samples, covering a significant range of natural thermal maturation experienced by the Vaca Muerta formation (Neuquén Basin, Argentina), are physically reconstructed using bright-field electron tomography. Their structural description allows us to measure crucial parameters such as the porosity, specific pore volume and surface area, aperture and cavity size distributions, and constriction. In addition, a model-free computation of the topological properties (effective porosity, connectivity, and tortuosity) is conducted. Overall, we document a general increase of the specific pore volume with thermal maturation. This controls the topological features depicting increasing accessibility to alkane molecules, sensed by the evolution of the effective porosity. Collectively, our results highlight the input of bright-field electron tomography in the study of complex disordered amorphous porous media, especially to describe the interplay between the structural features and transport properties of confined fluids.

9.
J Chem Phys ; 152(2): 024123, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941333

RESUMO

Reactive molecular dynamics (MD) simulations, especially those employing acceleration techniques, can provide useful insights on the mechanism underlying the transformation of buried organic matter, yet, so far, it remains extremely difficult to predict the time scales associated with these processes at moderate temperatures (i.e., when such time scales are considerably larger than those accessible to MD). We propose here an accelerated method based on flux sampling and kinetic integration along a 1D order parameter that can considerably extend the accessible time scales. We demonstrate the utility of this technique in an application to the dehydration of crystalline cellulose at temperatures ranging from 1900 K to 1500 K. The full decomposition is obtained at all temperatures apart from T = 1500 K, showing the same distribution of the main volatiles (H2O, CO, and CO2) as recently obtained using replica exchange molecular dynamics. The kinetics of the process is well fitted with an Arrhenius law with Ea = 93 kcal/mol and k0 = 9 × 1019 s-1, which are somehow larger than experimental reports. Unexpectedly, the process seems to considerably slow down at lower temperatures, severely departing from the Arrhenius regime, probably because of an inadequate choice of the order parameter. Nevertheless, we show that the proposed method allows considerable time sampling at low temperatures compared to conventional MD.

10.
Phys Rev Lett ; 125(25): 255501, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416387

RESUMO

Using a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary phase transition in granular aggregates with varying disorder and their inverse porous structures obtained by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be understood in terms of the surface-surface correlation length with a connected path through the fluid domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas phase transition in these porous materials is of second order nature near capillary critical temperature, which is shown to represent a true critical temperature, i.e., independent of the degree of disorder and the nature of the solid matrix, discrete or continuous. The critical exponents estimated here from finite-size scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as hypothesized by F. Brochard and P.G. de Gennes, with the underlying random fields induced by local disorder in fluid-solid interactions.

11.
Phys Rev E ; 100(4-1): 042906, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770910

RESUMO

We analyze the packing properties of simulated three-dimensional polydisperse samples of spherical particles assembled by mechanical compaction with zero interparticle friction, leading to random close-packed configurations of the highest packing fraction. The particle size distributions are generated from the incomplete beta distribution with three parameters: A size span and two shape parameters that control the curvature of the distribution function. For each size distribution, the number of particles is determined by accounting for the statistical representativity of all particle size classes in terms of both the numbers and volumes of particles. Remarkably, the packing fraction increases, up to a small variability, with an effective size span, known as the coefficient of uniformity, that combines the three control parameters of the distribution. The local particle environments are characterized by the particle connectivities and anisotropies, which unveil the class of particles with four contact neighbors as the largest class with an increasing population as a function of size span, indicating the higher stability of particles trapped by four larger particles. As a result of increasing topological inhomogeneity of the packings, the force distributions get increasingly broader with increasing effective size span. Finally, we find that larger particles do not always carry stronger average stresses, in particular when the particle size distribution allows for a sufficiently large number of small particles.

12.
J Phys Chem B ; 123(26): 5635-5640, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244104

RESUMO

It has been recognized that the microporosity of shale organic matter, especially that of kerogen, strongly affects the hydrocarbon recovery process from unconventional reservoirs. So far, the numerical studies on hydrocarbon transport through the microporous phase of kerogen have neglected the effect of poromechanics, that is, the adsorption-induced deformations, by considering kerogen as a frozen, nondeformable, matrix. Here, we use molecular dynamics simulations to investigate methane diffusion in an immature (i.e., with high H/C ratio) kerogen matrix, while explicitly accounting for adsorption-induced swelling and internal matricial motions, covering both phonons and nonperiodic internal deformations. However, in the usual frozen matrix approximation, diffusivity decreases with increasing fluid loading, as evidenced by a loss of free volume, accounting for adsorption-induced swelling that gives rise to an increase in free volume and, hence, in diffusivity. The obtained trend is further rationalized using a Fujita-Kishimoto free volume theory initially developed in the context of diffusion in swelling polymers. We also quantify the enhancing effect of the matrix internal motions (i.e., at fixed volume) and show that it roughly gives an order of magnitude increase in diffusivity with respect to a frozen matrix, thanks to fluctuations in the pore connectivity. We eventually discuss the possible implications of this work to explain the productivity slowdown of hydrocarbon recovery from shale immature reservoirs.

13.
Langmuir ; 35(12): 4397-4402, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30798608

RESUMO

A numerical and theoretical framework to address the poromechanical effect of capillary stress in complex mesoporous materials is proposed and exemplified for water sorption in cement. We first predict the capillary condensation/evaporation isotherm using lattice-gas simulations in a realistic nanogranular cement model. A phase-field model to calculate moisture-induced capillary stress is then introduced and applied to cement at different water contents. We show that capillary stress is an effective mechanism for eigenstress relaxation in granular heterogeneous porous media, which contributes to the durability of cement.

14.
Proc Natl Acad Sci U S A ; 115(49): 12365-12370, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442660

RESUMO

Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport properties. Specifically, we highlight the influence of adsorbed fluids on the elastic response. The resulting elastic energy concentrations are localized at the vicinity of macropores at low maturity whereas these concentrations present more homogeneous distributions at higher thermal maturities, due to pores' topology. The lattice models finally allow us to capture the effect of sorption on diffusion mechanisms with a sole input of network geometry. Eventually, we corroborate the dominant impact of diffusion occurring within the connected nanopores, which constitute the limiting factor of confined hydrocarbon transport in source rocks.

15.
Langmuir ; 34(45): 13766-13780, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30351957

RESUMO

While hydrocarbon expulsion from kerogen is certainly the key step in shale oil/gas recovery, the poromechanical couplings governing this desorption process, taking place under a significant pressure gradient, are still poorly understood. Especially, most molecular simulation investigations of hydrocarbon adsorption and transport in kerogen have so far been performed under the rigid matrix approximation, implying that the pore space is independent of pressure, temperature, and fluid loading, or in other words, neglecting poromechanics. Here, using two hydrogenated porous carbon models as proxies for immature and overmature kerogen, that is, highly aliphatic hydrogen-rich vs highly aromatic hydrogen-poor models, we perform an extensive molecular-dynamics-based investigation of the evolution of the poroelastic properties of those matrices with respect to temperature, external pressure, and methane loading as a prototype alkane molecule. The rigid matrix approximation is shown to hold reasonably well for overmature kerogen even though accounting for flexibility has allowed us to observe the well-known small volume contraction at low fluid loading and temperature. Our results demonstrate that immature kerogen is highly deformable. Within the ranges of conditions considered in this work, its density can double and its accessible porosity (to a methane molecule) can increase from 0 to ∼30%. We also show that these deformations are significantly nonaffine (i.e., nonhomogeneous), especially upon fluid adsorption or desorption.

16.
Sci Rep ; 7(1): 7068, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765559

RESUMO

Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

17.
Langmuir ; 33(42): 11457-11466, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28728412

RESUMO

Synthetic organic-inorganic composites constitute a new class of engineering materials finding applications in an increasing range of fields. The interface between the constituting phases plays a pivotal role in the enhancement of mechanical properties. In exfoliated clay-organic nanocomposites, individual, high aspect ratio clay sheets are dispersed in the organic matrix providing large interfaces and hence efficient stress transfer. In this study, we aim at elucidating molecular-scale reinforcing mechanisms in a series of model clay-organic composite systems by means of reactive molecular simulations. In our models, two possible locations of failure initiation are present: one is the interlayer space of the clay platelet, and the other one is the clay-organic interface. We systematically modify the cohesiveness of the interface and assess how the failure mechanism changes when the different model composites are subjected to a tensile test. Besides a change in the failure mechanism, an increase in the released energy at the interface (meaning an increased overall toughness) are observed upon weakening the interface by bond removal. We propose a theoretical analysis of these results by considering a cohesive law that captures the effect of the interface on the composite mechanics. We suggest an atomistic interpretation of this cohesive law, in particular, how it relates to the degree of bonding at the interface. In a broader perspective, this work sheds light on the importance of the orthogonal behavior of interfaces to nanocomposites.

18.
Langmuir ; 33(9): 2109-2121, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28165248

RESUMO

Realistic molecular models of silica-templated CMK-1, CMK-3, and CMK-5 carbon materials have been developed by using carbon rods and carbon pipes that were obtained by adsorbing carbon in a model MCM-41 pore. The interactions between the carbon atoms with the silica matrix were described using the PN-Traz potential, and the interaction between the carbon atoms was calculated by the reactive empirical bond order (REBO) potential. Carbon rods and pipes with different thicknesses were obtained by changing the silica-carbon interaction strength, the temperature, and the chemical potential of carbon vapor adsorption. These equilibrium structures were further used to obtain the atomic models of CMK-1, CMK-3, and CMK-5 materials using the same symmetry as found in TEM pictures. These models are further refined and made more realistic by adding interconnections between the carbon rods and carbon pipes. We calculated the geometric pore size distribution of the different models of CMK-5 and found that the presence of interconnections results in some new features in the pore size distribution. Argon adsorption properties were investigated using GCMC simulations to characterize these materials at 77 K. We found that the presence of interconnection results greatly improves the agreement with available experimental data by shifting the capillary condensation to lower pressures. Adding interconnections also induces smoother adsorption/condensation isotherms, and desorption/evaporation curves show a sharp jump. These features reflex the complexity of the nanovoids in CMKs in terms of their pore morphology and topology.

19.
Chem Sci ; 8(12): 8325-8335, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619179

RESUMO

The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization. The composition of the solid residue along the maturation pathway strictly follows what is observed for natural type III kerogen and for artificially matured samples under confined conditions. After expulsion of the fluid phase, the obtained microporous kerogen possesses the structure, texture, density, porosity and stiffness observed for mature type III kerogen and a microporous carbon obtained by saccharose pyrolysis at low temperature. As expected for this variety of precursor, the main resulting hydrocarbon is methane. The present work thus demonstrates that molecular simulations can now be used to assess, almost quantitatively, such complex chemical processes as petrogenesis in fossil reservoirs and, more generally, the possible conversion of any natural product into bio-sourced materials and/or fuel.

20.
J R Soc Interface ; 13(117)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27097652

RESUMO

More than 44% of building energy consumption in the USA is used for space heating and cooling, and this accounts for 20% of national CO2emissions. This prompts the need to identify among the 130 million households in the USA those with the greatest energy-saving potential and the associated costs of the path to reach that goal. Whereas current solutions address this problem by analysing each building in detail, we herein reduce the dimensionality of the problem by simplifying the calculations of energy losses in buildings. We present a novel inference method that can be used via a ranking algorithm that allows us to estimate the potential energy saving for heating purposes. To that end, we only need consumption from records of gas bills integrated with a building's footprint. The method entails a statistical screening of the intricate interplay between weather, infrastructural and residents' choice variables to determine building gas consumption and potential savings at a city scale. We derive a general statistical pattern of consumption in an urban settlement, reducing it to a set of the most influential buildings' parameters that operate locally. By way of example, the implications are explored using records of a set of (N= 6200) buildings in Cambridge, MA, USA, which indicate that retrofitting only 16% of buildings entails a 40% reduction in gas consumption of the whole building stock. We find that the inferred heat loss rate of buildings exhibits a power-law data distribution akin to Zipf's law, which provides a means to map an optimum path for gas savings per retrofit at a city scale. These findings have implications for improving the thermal efficiency of cities' building stock, as outlined by current policy efforts seeking to reduce home heating and cooling energy consumption and lower associated greenhouse gas emissions.


Assuntos
Conservação de Recursos Energéticos/métodos , Indústria da Construção/métodos , Temperatura Alta , Modelos Teóricos , Reforma Urbana/métodos , Massachusetts
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...